Holonomic Power Integrity Signoff Methodology of Mobile Baseband **Processor**

Steven Guo Deputy Director IC-Packaging Codesign Aug 5,2014

Spreadtrum and Product Introduction

GSM/EDGE/TD-SCDMA/WCDMA/TD-LTE/FDD-LTE

Feature Phone / Smart Phone / Tablet / Datacard

Mobile Devices, Today & Tomorrow (I)

Lifelike **Graphics**

Larger Display

Better User Experier

High-Speed Connectivity

3G/4G/5G

Smarter **Features**

Biometrics/ Health/Medical

Computing Everywhere Multi-Core Processing

Mobile Devices, Today & Tomorrow (II)

Higher graphic resolution Heavier application

HD: 1280x720

2K: 1920x1080 4K: 3840x2160 8K: 7680x4320

Less Power,

More density, higher band-width

LPDDR3 @2ch x32 x1600Mbps @12.8GBps LPDDR4 @4ch x32 x3200Mbps @51.2GBps

Denisty:16GB/24GB/32GB

Technology

@multi-GHz Quad Core... 28nm/16nm/10nm

Thinner and Lighter

18/12/8 inch 450/300/200mm

ALWAYS [

7.1 6.2 5.8.... 9.2 11.2 9.3 (mm)

Mobile DRAM will Exceed PC DRAM Performance

Lower Power Design and Power Trend

Power Signoff Challenges of Mobile Chips

High Performance

User Experience

Less Design Margin

VDD: 0.9V L * di /dt Lower Vt Larger Leakage

Power Integrity Analysis Collaborating Across Team

CoWork

PI is not just IC Designer's Job

Designer′s Job

System/IC-Centric PI Co-simulation

PMIC/DC-DC PCB/Decap

On-Package IR-Drop

Source: Ball Sink: Bump

On-Chip IR-Drop

Source: Bump

Sink: Macros /Memory

Standard Cell

Schematic representation of a Chip/System Co-simulation

Flipchip Baseband / Application Processor Case

• Ball: 492

Bumps: 1537

Power Net: VDDCORE 0.9V (TT)

VDDARM 1.0V (TT)

Ground Net: VSSCORE

System-Centric DC IR-Drop simulation with DPM

System-Centric DC IR-Drop simulation with DPM (cont.)

Package Bump Pad Current (without and with DPM)

Package Bump Pad IR-Drop (without and with DPM)

Equal Current without DPM

Unequal/Distributed Current with DPM

Package Current Density Distribution (without and with DPM)

Chip-centric Static/Dynamic IR-Drop Simulation

- set_package -spice ./via_pkg_dpm_0619_PinBaseSPICE.ckt
- set_rail_analysis_domain -name ALL -pwrnets VDDCORE -gndnets VSSCORE \
 -threshold 0.05
- set power pads-net VDDCORE -format xy -file VDDCORE.ppl.pkg
- set_power_pads -net VSSCORE -format xy -file VSSCORE.ppl.pkg
- analyze_rail -type domain -results_directory Dynamic_Result ALL

- create_die_model-model_transform_method res_shielding -state_directory Dynamic_Result/ALL_25C_dynamic_1\
 - -output_directory die_model -type n_port -rail_analysis_domain ALL

Link PPM Model with Voltus in IR-Drop Simulation


```
Kd1_402 LD1 LD402 0.257499
Kd1_403 LD1 LD403 0.264899
Kd1_404 LD1 LD404 0.249644
Kd1_405 LD1 LD405 0.238175
Kd1_406 LD1 LD406 0.307995
Kd1_407 LD1 LD407 0.290569
Kd1_408 LD1 LD408 0.26358
R_11577 DrN156 DrN104 119.331
R_11578 DrN157 DrN104 101.849
R_11579 DrN158 DrN104 69860.7
R_11580 DrN159 DrN104 75352.9
R_11581 DrN160 DrN104 394599
R_11582 DrN161 DrN104 63596.1
R_11583 DrN162 DrN104 11613.6
```

```
LD66 die_top_18 DrN66 8.47554e-10
LD67 die_top_36 DrN67 3.09247e-10
LD68 die_top_38 DrN68 3.06801e-10
LD69 die_top_44 DrN69 8.27109e-10
LD70 die_top_48 DrN70 6.17681e-10
LD71 die_top_62 DrN71 2.81627e-10
LD72 die_top_64 DrN72 2.77682e-10
LD73 die_top_70 DrN73 8.56309e-10
LD74 die_top_72 DrN74 6.40649e-10
```

R L C K MCP

```
*[REM]The following is the info for component connection BGA0619
*[Connection] BGA0619 BGA 492
                                                  Net
*[Connection Type] BGA
                                             Grouped
*U11 BGA0619 U11
                     VDDARM
                                 -0.00160
*U12 BGA0619 U11
                     VDDARM
                                 -0.0012000 -0
                                 -0.0008000 -0.0008000
*U13 BGA0619 U11
                     VDDARM
*V11 BGA0619 U11
                     VDDARM
                                 -0.0016000 -0.0012000
*V12 BGA0619 U11
                                 -0.0012000 -0.0012000
                     VDDARM
*V13 BGA0619 U11
                     VDDARM
                                 -0.0008000 -0.0012000
    BGA0619 U11
                     VDDARM
                                 -0.0012000 -0.0016000
     BGA0619 U11
                     VDDARM
                                 -0.0008000 -0.0016000
     BGA0619 U11
                     VDDARM
                                 -0.0004000 -0.0016000
    BGA0619 U11
                     VDDARM
                                 -0.0016000 -0.0020000
*Y12 BGA0619 U11
                     VDDARM
                                 -0.0012000 -0.0020000
    BGA0619 U11
                     VDDARM
                                 -0.0008000 -0.0020000
*Y14 BGA0619 U11
                     VDDARM
                                 -0.0004000 -0.0020000
*K13 BGA0619 K13
                                 -0.0008000 0.0020000
                     VDDCORE
*K14 BGA0619 K13
                     VDDCORE
                                 -0.0004000 0.0020000
*K15 BGA0619 K13
                     VDDCORE
                                 0.0000000 0.0020000
    BGA0619 K13
                     VDDCORE
                                 0.0004000
                                           0.0020000
*K17 BGA0619 K13
                     VDDCORE
                                 0.008000
                                           0.0020000
*L16 BGA0619 K13
                     VDDCORE
                                 0.0004000
                                           0.0016000
*L17 BGA0619 K13
                     VDDCORE
                                 0.0008000 0.0016000
*L18 BGA0619 K13
                     VDDCORE
                                 0.0012000 0.0016000
```

Chip VSSCORE Static IR-Drop (without and with PPM)

Chip VDDCORE Static IR-Drop (without and with PPM)

Summary

- The new Co-simulation methodology bridge cross domain (Package and IC) database interchange easily and effectively
- DPM model enables to predict more accurate current distribution on each bump pad, week design region and optimize the substrate design before chip tape
- Dynamic IR-Drop with PPM helps to find more real transient voltage and ripple noise, enable IC designer to optimize the on-chip Power Grid design

